

Electronic Ignition Control Circuit

Description

The LD3335 (analog MC79076), in conjunction with an appropriate Power Darlington Transistor, provides an economical solution for automotive ignition applications. The LD3335offers optimum performance by providing closed loop operation of the Power Darlington in controlling the ignition coil current.

Features

- Hall or Variable Reluctance Sensor Input
- Ignition Coil Voltage Internally Limited to 375 V
- Coil Current Limiting to 7.5 A
- Output On-Time (Dwell) Control
- Dwell Feedback Control to Sense Coil Variation
- Two arrangement of pin

Ordering Information

Package	Remarks
SOP16L(W)	Tubed, Reeled, Pb-free

LD3335

Figure1. LD3335 Simplified Application Diagram

DANDONG HUAAO ELECTRONICS CO., LTD.

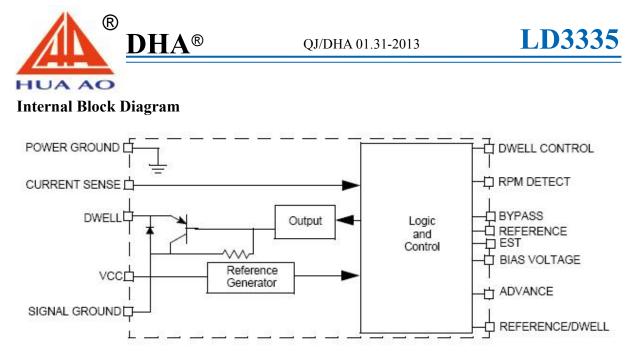


Figure2. LD3335 Simplified Internal Block Diagram

Pin Connections

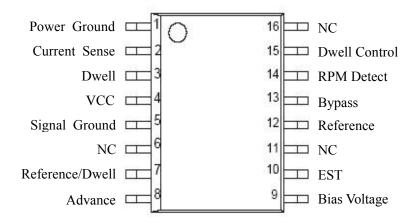


Figure3. LD3335 Pin Connections

DANDONG HUAAO ELECTRONICS CO., LTD.

Electrical Characteristics

Table 1. Maximum Ratings

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Ratings	Symbol	Value	Unit	
Electrical Ratings		·		
Supply voltage				
Steady-State	V _{CC(SUS)}	36	V	
Transient Conditions ⁽¹⁾	V _{CC(PK)}	50		
Supply Current	IT			
Transient Conditions ⁽²⁾		1.0	Α	
Transient Negative Current ($tT = 60ms$)		-100	mA	
Transient Negative Current ($tT = 1ms$)		-1.3	Α	
Input Voltage ⁽³⁾				
Ref/Dwell, Advance	V _{IN1}	-5.0 to 30	v	
EST, Bypass	V _{IN2}	-5.0 to 24		
Ref/Dwell Input Current	I _{IN1}	-20	mA	
Dwell ON Sink Current	ID			
Output ON (Operating)		0.3	Α	
Output ON (t = 10ms)		0.8		
Dwell OFF Voltage ⁽⁴⁾	V _{D(OFF)}	5.0	V	
Thermal Ratings				
Storage Temperature	T _{STG}	-65 to 150	°C	
Operating Ambient Temperature	T _A	-30 to 125	°C	
Thermal Resistance		1		
Operating Junction Temperature	TJ	-30 to 150	°C	
Thermal Resistance (Junction-to-Ambient) - SO8	Ø _{J-A}	80	°C/W	
Peak Package Reflow Temperature During Reflow ⁽⁵⁾ , ⁽⁶⁾ ,	T _{PPRT}	Note 6	°C	

Notes

1. Survivability of device with transient voltage applied to V_{CC} pin for a duration not to exceed 10ms.

2. Survivability of device with overvoltage applied to V_{CC} pin producing the current for a duration not to exceed 10ms.

3. Exceeding this voltage range on the function pin may cause permanent damage to the device.

4. A zener diode is incorporated across collector to emitter of the output NPN device to prevent voltage overdrive of the external Darlington switch transistor.

5. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.

6. Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL),

DANDONG HUAAO ELECTRONICS CO., LTD.

Table 2. Static Electrical Characteristics

Characteristics noted under conditions 7.0 V \leq V_{CC} \leq 18V, - 40°C \leq T_A \leq 125°C, GND=0V unless otherwise noted. Typical values noted reflect the approximate parameter means at T_A=25°C under nominal conditions unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
Inputs					•
Advance Input Resistance	R _(A)				kΩ
$V_{CC} = 16 \text{ V}, \text{ Ref/Dwell} = 1.0 \text{ V},$		15	18	25	
Advance = 1.0 mA , EST = Bypass = 0 V					
Advance Voltage ⁽⁷⁾	V _{TH(A)}				V
$V_{CC} = 16 \text{ V}, \text{Ref/Dwell} = 1.0 \text{ V}, \text{EST} = \text{Bypass} = 0 \text{ V}$		-	0.05	0.1	
Advance Threshold Voltage ⁽⁷⁾					V
$V_{CC} = 16 \text{ V}, \text{Ref/Dwell} = 1.0 \text{ V}, \text{EST} = \text{Bypass} = 0 \text{ V}$					
Dwell = Reference = RPM Detect = open,					
Dwell Control = sinking 10 μ A					
Increasing	V _{TH+(A)}	$V_{\rm B} + 0.103$	$V_{\rm B} + 0.114$	V _B +0.130	
Decreasing	V _{TH} -(A)	$V_{\rm B} + 0.045$	$V_{\rm B} + 0.068$	-	
Hysteresis	V _{HYS(A)}	0.018	0.045	-	
Bypass Input Resistance	R _(BP)	6.0	9.2	16	kΩ
$V_{CC} = 16 \text{ V}, \text{ Ref/Dwell} = \text{Advance} = 3.0 \text{ V},$					
EST = Bypass = 0 V					
Bypass Voltage	V _(BP)	-	0.065	0.1	V
$V_{CC} = 16 \text{ V}, \text{ Ref/Dwell} = \text{Advance} = 1.0 \text{ V}, \text{ EST} = 0 \text{ V}$					
Bypass Threshold Voltage ⁽⁸⁾					V
Ref/Dwell = Advance = 1.0 V, EST = 3.0 V					
Increasing	V _{TH+(BP)}	$V_{\rm B} + 1.6$	$V_{\rm B} + 0.188$	$V_{\rm B} + 2.1$	
Decreasing	V _{TH} -(BP)	$V_{\rm B} + 0.9$	$V_{\rm B} + 0.103$	-	
Hysteresis	V _{HYS(BP)}	0.65	0.86	-	
Current Sense Threshold Voltage ⁽⁹⁾	V _{TH(CS)}				mV
V_{CC} = 16 V, Ref/Dwell = Advance = 1.0 V,		90	105	121	
EST = Bypass = 3.0 V					
EST Input Resistance	R _(EST)				kΩ
$V_{CC} = 16 \text{ V}, \text{ Ref/Dwell} = \text{Advance} = 1.0 \text{ V},$		7.0	10.3	18	
Bypass = 3.0 V					
EST Input Voltage (EST Mode)	V _(EST)			0.1	V
$V_{CC} = 16 \text{ V}, \text{ Ref/Dwell} = \text{Advance} = 1.0 \text{ V},$		-	0.07		
Bypass = 3.0 V					

Notes

7. Advance Threshold Voltage is the positive (or negative) going voltage on Advance necessary cause the Dwell Control voltage to positive (or negative) going transition 2.0 V respectively. It is expressed as $VTH\pm(A) = VB + VX$ where VB is the Bias Voltage and VX is the additional voltage necessary to attain the threshold.

8. Bypass Threshold Voltage is the positive (or negative) going voltage on Bypass necessary cause the Dwell voltage to positive (or negative) going transition 1.5 V respectively. It is expressed as $VTH\pm(BP) = VB + VX$ where VB is the Bias Voltage and VX is the additional voltage necessary to attain the threshold.

9. Increasing voltage on Current Sense which when attained will cause Dwell to transition low to 1.5 V with a 10 mA load.

DANDONG HUAAO ELECTRONICS CO., LTD.

Table 2. Static Electrical Characteristics (continued)

Characteristics noted under conditions 7.0 V \leq V_{CC} \leq 18 V, - 40°C \leq T_A \leq 125°C, GND = 0 V unless otherwise noted. Typical values noted reflect the approximate parameter means at T_A = 25°C under nominal conditions unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
EST Threshold Voltage ⁽¹⁰⁾					V
(Ref/Dwell = Advance = 1.0 V, Bypass = 3.0 V)					
Increasing	V _{TH+(EST)}	1.65	1.86	2.0	
Decreasing	V _{TH} -(EST)	0.8	0.89	-	
Hysteresis	V _{HYS(EST)}	0.79	0.97	-	
Ref/Dwell Current ⁽¹¹⁾	I _(R/D)				μA
$(V_{CC} = 16 \text{ V}, \text{Advance} = 1.0 \text{ V}, \text{EST} = \text{Bypass} = 0 \text{ V})$					
Ref/Dwell Voltage = 1.0 V		-12	-1.38	1.0	
Ref/Dwell Voltage = 20 V		-1.0	0.02	5.0	
Ref/Dwell Clamp Voltage	V _{(R/D)CL}				V
$(V_{CC} = 16 \text{ V}, \text{Advance} = 1.0 \text{ V}, \text{EST} = \text{Bypass} = 0 \text{ V})$					
$I_{R/D} = 100 \mu A$ (Sourcing)		-0.01	-0.04	0.2	
$I_{R/D} = 1.0 \text{mA}$ (Sourcing)		-0.62	-0.54	-	
Ref/Dwell Threshold (Bypass Mode) (12)					V
(Advance = 1.0 V, EST = Bypass = 0 V, Reference =					
sinking 10 µA)					
Increasing	V _{TH+(R/D)BP}	V _B +0.09	V _B +0.106	V _B +0.116	
Decreasing	V _{TH} -(R/D)BP	V _B +0.018	V _B +0.03	-	
Hysteresis	V _{HYS(R/D)BP}	0.055	0.076	-	
Ref/Dwell Threshold (EST Mode) (12)					V
(Advance = 1.0 V, EST = 0 V, Bypass = 3.0 V, Reference =					
sinking 10 μA)					
Increasing	V _{TH+(R/D)EST}	V _B +0.445	V _B +0.50	V _B +0.535	
Decreasing	VTH-(R/D)EST	V _B +0.038	V _B +0.062	-	
Hysteresis	V _{HYS(R/D)EST}	0.395	0.436	-	
Ref/Dwell Threshold (No Pump) (13)					V
(ivo i unip)					
(Advance=1.0V, EST=Bypass=0V, Dwell =sinking 10 mA)	V	V 10.002	V 10 119	V _B +0.128	
Increasing	V _{TH+(R/D)NP}	$V_{\rm B}$ +0.003	$V_{\rm B}$ +0.118	VB+0.128	
Decreasing	V _{TH} -(R/D)NP	$V_{B}+0.021$	$V_{\rm B}$ +0.047	-	
Hysteresis	V _{HYS(R/D)NP}	V _B +0.013	V _B +0.072	-	

Notes

10. EST Threshold Voltage is the positive (or negative) going voltage on EST necessary cause the Dwell voltage to positive (or negative) going transition 1.5 V respectively. It is expressed as $V_{TH\pm(EST)}$ and is in reference to ground.

11. Ref/Dwell can either source or sink current; A minus sign denotes the Ref/Dwell is sourcing current.

12. Ref/Dwell Threshold Voltage (Bypass Mode) is the positive (or negative) going voltage on Ref/Dwell necessary cause the Reference voltage to positive (or negative) going transition 1.5 V respectively. It is expressed as $V_{TH\pm(RD)} = V_B + V_X$ where V_B is the Bias Voltage and V_X is the additional voltage necessary to attain the threshold.

13. Ref/Dwell Threshold Voltage (No Pump) is the positive (or negative) going voltage on Ref/Dwell necessary cause the Dwell voltage to positive (or negative) going transition 1.5 V respectively. It is expressed as $V_{TH\pm(RD)} = V_B + V_X$ where V_B is the Bias Voltage and V_X is the additional voltage necessary to attain the threshold. Advance = 1.0 V providing no input assist or "No Pump" influence of Dwell signal; Reference open.

DANDONG HUAAO ELECTRONICS CO., LTD.

Table 2. Static Electrical Characteristics (continued)

Characteristics noted under conditions 7.0 V \leq V_{CC} \leq 18 V, - 40°C \leq T_A \leq 125°C, GND = 0 V unless

otherwise noted. Typical values noted reflect the approximate parameter means at $T_A = 25^{\circ}C$ under nominal conditions unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
					V
Ref/Dwell Threshold (Max Pump) (14)					
$(V_{CC} = 16 \text{ V}, \text{Advance} = 3.0 \text{ V}, \text{EST} = \text{Bypass} = 0 \text{ V}, \text{Dwell}$					
sinking 10 mA, Dwell Control = open)	V _{TH+(R/D)MP}	V _B +0.175	V _B +0.474	V _B +0.80	
Increasing	VTH-(R/D)MP	V _B +0.115	V _B +0.425	V _B +0.73	
Decreasing	V _{HYS(R/D)M} P	V _B +0.025	V _B +0.048	5	
Hysteresis				-	
Outputs					
Bias Resistance to Ground	R _(B)				kΩ
Dwell =V _{CC} =Ref/Dwell=Reference= Dwell Control = open,		0.55	0.68	0.9	
Advance = 1.0 V , EST = Bypass = 0 V					
Bias Voltage (Bypass Mode)	V _{(B)BP}				V
Ref/Dwell = Advance = 1.0 V, EST = Bypass = 0 V		2.25	2.43	2.6	
Bias Voltage Regulation (Bypass Mode)	V _{(B)BP}				mV
Ref/Dwell = Advance = 1.0 V, EST = Bypass = 0 V		-	30	40	
Bias Voltage (EST Mode)	V _{(B)EST}				V
$V_{CC} = 16 \text{ V}, \text{ Ref/Dwell} = \text{Advance} = 1.0 \text{ V}, \text{ EST} = 0 \text{ V},$		1.9	2.04	2.2	
Bypass $=3.0 \text{ V}$					
Dwell Saturation Voltage	V _{(D)SAT}				V
$V_{CC} = 4.0 \text{ V}, I_D = 40 \text{mA}, \text{Ref/Dwell} = \text{Advance} = 3.0 \text{ V},$		-	0.05	0.1	
EST = Bypass = 0 V					
$V_{CC} = 16 \text{ V}, I_D = 160 \text{ mA}, \text{ Ref/Dwell} = \text{Advance} = 3.0 \text{ V},$		-	0.14	0.24	
EST = Bypass = 0 V					
$V_{CC} = 24$ V, $I_D = 240$ mA, Ref/Dwell = Advance = 1.0 V,		-	0.20	0.35	
EST = Bypass = 3.0 V					
$V_{CC} = 36 \text{ V}, I_D = 360 \text{ mA}, \text{ Ref/Dwell} = \text{Advance} = 1.0 \text{ V},$		-	0.29	0.5	
EST = Bypass = 3.0 V					
Dwell Reverse Clamp Voltage ⁽¹⁵⁾	V _{(D)REV}	-0.9	-0.98	-1.2	V
Dwell Leakage Current ⁽¹⁶⁾	I _{(D)KG}				μA
$V_{CC} = 16 \text{ V}, \text{ Dwell} = 5.0 \text{ V}, \text{ Ref/Dwell} = \text{Advance} = 3.0 \text{ V},$		-	0.044	50	
EST =Bypass = 0, Bias Voltage = Reference = open					
Reference Low ⁽¹⁷⁾	V _{(R)LOW}				
I_R = sinking 0.3 mA, Ref/Dwell = Advance = 1.0 V,		-	0.13	0.22	v
EST = Bypass = 0 V					

Notes

14. Ref/Dwell Threshold Voltage (Max Pump) is the positive (or negative) going voltage on Ref/Dwell necessary cause the Dwell voltage to positive (or negative) going transition 1.5 V respectively. It is expressed as $V_{TH\pm(RD)} = V_B + V_X$ where V_B is the Bias Voltage and V_X is the additional voltage necessary to attain the threshold. Advance = 3.0V providing maximum input assist or Max Pump" influence of Dwell signal; Reference = Dwell Control = open.

15. All pins open except Pwr Gnd with Dwell sinking 200 mA.

16. Limit conditions with Dwell output NPN in the OFF condition.

17. Reference saturation voltage to ground with 0.3mA of current going into the Reference.

DANDONG HUAAO ELECTRONICS CO., LTD.

Table 2. Static Electrical Characteristics (continued)

Characteristics noted under conditions 7.0 V \leq V_{CC} \leq 18 V, - 40°C \leq T_A \leq 125°C, GND = 0 V unless otherwise noted. Typical values noted reflect the approximate parameter means at $T_A = 25^{\circ}C$ under nominal conditions unless otherwise noted.

$ V_{CC} = 4.0 \text{ V}, \text{ I}_{R} = \text{sourcing 100 mA, Ref/Dwell} = 3.0 \text{ V}, \\ \hline \text{Advance} = 1.0 \text{ V}, \text{EST} = \text{Bypass} = 0 \text{ V} \\ \hline \text{Reference High/Clamped} & ^{(27)} & \text{V}_{(1)} \\ \hline \text{V}_{CC} = 16 \text{ V}, \text{Ref/Dwell} = 3.0 \text{ V}, \text{Advance} = 1.0 \text{ V}, \text{EST} = \\ \hline \text{Bypass} = 0 \text{ V} \\ \hline \text{I}_{R} = \text{sourcing 10 } \mu\text{A} \\ \hline \text{I}_{R} = \text{sourcing 1.0 mA} \\ \hline \text{Controls} \\ \hline \text{Dwell Control Negative Clamp Voltage} & ^{(27)} & \text{V}_{(2)} \\ \hline \text{V}_{CC} = 16 \text{ V}, \text{I}_{DC} = \text{sourcing 100 } \mu\text{A}, \text{Ref/Dwell} = \text{Advance} \\ = 1.0 \text{ V}, \text{EST} = \text{Bypass} = 0 \text{ V} \\ \hline \text{Dwell Control Positive Clamp Voltage} & ^{(27)} & \text{V}_{(2)} \\ \hline \end{array} $)HI/UNCL R)HI/CL (DC)-CL (DC)+CL	3.2 - 12 0.5 8.0	3.36 5.41 15.3 0.7	- 6.0 - 0.8	
$ \begin{array}{c c} V_{CC} = 4.0 \ V, \ I_R = \ \text{sourcing 100 mA, Ref/Dwell} = 3.0 \ V, \\ \hline \text{Advance} = 1.0 \ V, \ \text{EST} = \ \text{Bypass} = 0 \ V \\ \hline \text{Reference High/Clamped} & \ ^{(27)} & V_{(1)} \\ \hline V_{CC} = 16 \ V, \ \text{Ref/Dwell} = 3.0 \ V, \ \text{Advance} = 1.0 \ V, \ \text{EST} = \\ \hline \text{Bypass} = 0 \ V \\ \hline I_R = \ \text{sourcing 10 } \mu \text{A} \\ \hline I_R = \ \text{sourcing 10 } \mu \text{A} \\ \hline \text{I}_R = \ \text{sourcing 1.0 mA} \\ \hline \text{Ontrols} \\ \hline \hline \text{Dwell Control Negative Clamp Voltage} & \ ^{(27)} & V_{(2)} \\ \hline V_{CC} = 16 \ V, \ I_{DC} = \ \text{sourcing 100 } \mu \text{A}, \ \text{Ref/Dwell} = \ \text{Advance} \\ = 1.0 \ V, \ \text{EST} = \ \text{Bypass} = 0 \ V \\ \hline \hline \text{Dwell Control Positive Clamp Voltage} & \ ^{(27)} & V_{(2)} \\ \hline \end{array} $	(DC)-CL	0.5	5.41 15.3 0.7	6.0	V
Reference High/Clamped $^{(27)}$ $V_{(1)}$ $V_{CC} = 16 \text{ V}, \text{ Ref/Dwell} = 3.0 \text{ V}, \text{ Advance} = 1.0 \text{ V}, \text{ EST} =$ Bypass = 0 V $I_R = \text{sourcing 10 } \mu \text{A}$ $I_R = \text{sourcing 1.0 mA}$ Image: Control SDwell Control Negative Clamp Voltage $^{(27)}$ $V_{(27)}$ $V_{CC} = 16 \text{ V}, I_{DC} = \text{sourcing 100 } \mu\text{A}, \text{Ref/Dwell} = \text{Advance}$ $I_R = 1.0 \text{ V}, \text{ EST} = \text{Bypass} = 0 \text{ V}$ Dwell Control Positive Clamp Voltage $^{(27)}$ $V_{(27)}$	(DC)-CL	0.5	0.7	-	V
$V_{CC} = 16 \text{ V, Ref/Dwell} = 3.0 \text{ V, Advance} = 1.0 \text{ V, EST} = Bypass = 0 \text{ V}$ $I_R = \text{sourcing } 10 \ \mu\text{A}$ $I_R = \text{sourcing } 1.0 \text{ mA}$ Pontrols $Dwell \text{ Control Negative Clamp Voltage} \xrightarrow{(27)} \text{ V}_{(27)}$ $V_{CC} = 16 \text{ V, } I_{DC} = \text{sourcing } 100 \ \mu\text{A, Ref/Dwell} = \text{Advance}$ $= 1.0 \text{ V, EST} = Bypass = 0 \text{ V}$ $Dwell \text{ Control Positive Clamp Voltage} \xrightarrow{(27)} \text{ V}_{(27)}$	(DC)-CL	0.5	0.7	-	V
$\begin{array}{c c} Bypass = 0 \ V \\ I_R = sourcing 10 \ \mu A \\ I_R = sourcing 1.0 \ mA \\ \hline \begin{tabular}{ll} \hline \end{tabular} \\ \hline $		0.5	0.7	-	
$I_{R} = \text{sourcing 10 } \mu \text{A}$ $I_{R} = \text{sourcing 1.0 } \text{mA}$		0.5	0.7	-	
$I_{R} = sourcing 1.0 \text{ mA}$ Jontrols Dwell Control Negative Clamp Voltage ⁽²⁷⁾ $V_{CC} = 16 \text{ V}, I_{DC} = sourcing 100 \ \mu\text{A}, \text{Ref/Dwell} = \text{Advance}$ $= 1.0 \text{ V}, \text{EST} = \text{Bypass} = 0 \text{ V}$ Dwell Control Positive Clamp Voltage ⁽²⁷⁾ $V_{CC} = V_{CC} = V_{CC} + V_$		0.5	0.7	-	
OntrolsDwell Control Negative Clamp Voltage (27) V_0 $V_{CC} = 16$ V, $I_{DC} =$ sourcing 100 μ A, Ref/Dwell = Advance $= 1.0$ V, EST= Bypass = 0 VDwell Control Positive Clamp Voltage (27) V_0		0.5	0.7	0.8	
Dwell Control Negative Clamp Voltage $^{(27)}$ V_0 $V_{CC} = 16$ V, $I_{DC} =$ sourcing 100 μ A, Ref/Dwell = Advance $= 1.0$ V, EST= Bypass = 0 VDwell Control Positive Clamp Voltage $^{(27)}$ V_0				0.8	
$V_{CC} = 16 \text{ V}, I_{DC} = \text{sourcing } 100 \mu\text{A}, \text{ Ref/Dwell} = \text{Advance}$ $= 1.0 \text{ V}, \text{EST} = \text{Bypass} = 0 \text{ V}$ Dwell Control Positive Clamp Voltage ⁽²⁷⁾ V ₀				0.8	
$V_{CC} = 16 \text{ V}, \text{ I}_{DC} = \text{sourcing } 100 \mu\text{A}, \text{ Ref/Dwell} = \text{Advance}$ = 1.0 V, EST= Bypass = 0 V Dwell Control Positive Clamp Voltage ⁽²⁷⁾ V ₀				0.8	V
= 1.0 V, EST= Bypass = 0 V Dwell Control Positive Clamp Voltage ⁽²⁷⁾ V ₍₁	(DC)+CL	8.0	8.2		V
	(DC)+CL	8.0	° 7		V
	()	8.0	0 2		1 V
$V_{CC} = 16 \text{ V}, I_{DC} = \text{sinking } 100 \mu\text{A}, \text{ Ref/Dwell} = 1.0 \text{ V},$			8.2	8.4	
Advance = Open, $EST = Bypass = 0 V$					
· · · · · · · · · · · · · · · · · · ·	C)CHG				μA
V _{CC} = 16 V, Ref/Dwell = 1.0 V, Advance = Dwell Control =	,c)ene	30	47	58	
3.0 V, EST = Bypass = 0 V					
	DISCHG				μA
$V_{CC} = 16$ V, Current Sense = 0.5 V, Ref/Dwell = Advance =	,	18	33	48	.
1.0 V, EST = Bypass = 0 V					
	C)SINK				μA
$V_{CC} = 16 \text{ V}, \text{Ref/Dwell} = \text{Advance} = 1.0 \text{ V}, \text{EST} = \text{Bypass} = 10 \text{ V}$		-	1.1	2.5	
0 V, Dwell Control = 7.0 V					
RPM Detect Charge Current ON ⁽²⁷⁾ I _{(RP}	PM)CHG				mA
$V_{CC} = 16$ V, Ref/Dwell = 3.0 V, Advance = 1.0 V, EST =	,	-4.0	0.54	1.0	
Bypass = $0 V$					
	PM)LKG				μΑ
$V_{CC} = 16 \text{ V}, 1.0 \text{ V} = \text{Ref/Dwell} = \text{Advance} = 3.0 \text{ V}, \text{EST} =$,				.
Bypass = $0 V$					
RPM Detect = 0.5 V		04.0	0.55	1.0	
RPM Detect = 1.5 V		-0.1	0.01	0.1	
	RPM)CL		-		V
$V_{CC} = 16 \text{ V}, \text{ Ref/Dwell} = 3.0 \text{ V}, \text{ Advance} = 1.0 \text{ V}, \text{ EST} = 100000000000000000000000000000000000$		2.4	2.5	2.7	
Bypass =0 V, RPM Detect = sourcing $16 \mu\text{A}$					

Notes

18. Dwell Control adjusts the reference voltage of Dwell Comparator

19. Dwell Control. sourcing 100 µA.

20. Dwell Control sinking 100 µÅ.

21. Dwell Control at 3.0 V; Internal Dwell Control transistor OFF

Dwell Control at 3.0 V; Internal Dwell Control transistor ON.
 Dwell Control at 7.0 V; Internal Dwell Control transistor OFF.

24. Q53 and Q54 both ON; Measured with RPM Detect voltage at 0.5 V to reflect maximum source current capability.

See Typical Applications on page 9

25. Q53 and Q54 both OFF; Measured with RPM Detect voltage at 0.5 V and 1.5 V to reflect maximum leakage current.

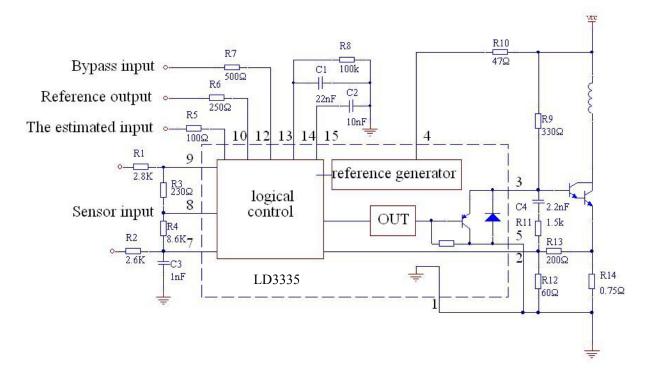
See Typical Applications on page 9

26. Q53 and Q54 both ON; RPM Detect sinking 16 µA. See Typical Applications on page 9

DANDONG HUAAO ELECTRONICS CO., LTD.

Table 2. Static Electrical Characteristics (continued)

Characteristics noted under conditions 7.0 V \leq V_{CC} \leq 18 V, - 40°C \leq T_A \leq 125°C, GND = 0 V unless otherwise noted. Typical values noted reflect the approximate parameter means at T_A = 25°C under nominal conditions unless otherwise noted.


Characteristic	Symbol	Min	Тур	Max	Unit
RPM Detect Threshold ⁽²⁷⁾	V _{TH-(RPM)}				V
$V_{CC} = 16 \text{ V}, \text{Ref/Dwell} = \text{Advance} = 3.0 \text{ V}, \text{EST} = \text{Bypass} = 0 \text{ V}$		0.8	0.92	1.0	
RPM Detect Charge Current	I _{(RPM)CHG}				mA
$V_{CC} = 16 \text{ V}, \text{Ref/Dwell} = 3.0 \text{ V}, \text{Advance} = 1.0 \text{ V}, \text{EST} = \text{Bypass} = 0 \text{ V}$		-	-2.0	-	

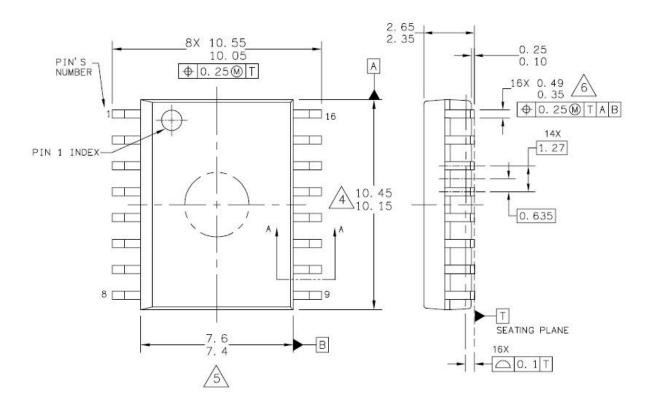
Notes

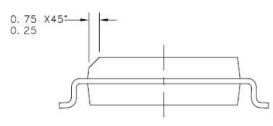
27. Decreasing Threshold; RPM Detect voltage decreased from 0.6 V until Dwell voltage transitions low to 1.5 V with 10 mA load.

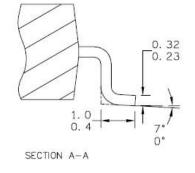
DANDONG HUAAO ELECTRONICS CO., LTD.

QJ/DHA 01.31-2013

DANDONG HUAAO ELECTRONICS CO., LTD.




QJ/DHA 01.31-2013


LD3335

SOP16L(W)

Dimensions in mm

DANDONG HUAAO ELECTRONICS CO., LTD.