

IC for Inductive Proximity Switches with Short Circuit Protection

Introduction

The LDA505 (instead of the TCA505) is an application-specific integrated circuit with short-circuit protection developed for inductive proximity switching applications. It can be used in a wide range of proximity sensors or proximity control systems, as well as in a variety of inductive instrumentation. Induction tachometer, etc. The LDA505 consists of an oscillator, a switching circuit, and an amplifying output circuit. The basic working principle is to use an external inductor and capacitor to form an LC high-frequency resonant circuit and generate an alternating magnetic field in the resonant loop. When the detected metal target approaches the magnetic field and reaches the sensing distance, an eddy current is generated in the detected metal target and the energy of the oscillator is taken up, so that the amplitude of the oscillator is attenuated or stopped. The oscillation and oscillation of the oscillator are processed by the post-amplifier circuit and converted into a switching signal to trigger the drive control device, thereby achieving the purpose of non-contact detection. LDA505 has the characteristics of high integration, wide working voltage, large output current, adjustable control distance, few peripheral circuits, convenient application and stable and reliable operation. Compared with the inductive proximity switch scheme composed of general discrete components, the LDA505 integrated chip solution has better consistency and stability, so it is especially suitable for high reliability and high reliability. **Order information**

Feature

- Wide supply voltage: 4.0^{40V}
- Low current consumption: < 0.7mA
- Integrated output stage current: >70mA
- High noise immunity
- High switching frequencies up to 5 kHz
- Suitable for two-wire AC proximity switches
- Temperature response of the IC compensates that of the coil
- Short-circuit and overload protection of output stages and external components
- Temperature range −40[~]+125[°]C

Typical application

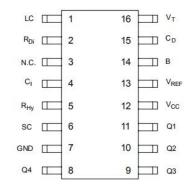
- Inductive proximity switch
- Contactless switch
- Position control
- Isolation detection
- Speed measurement

DANDONG HUAAO ELECTRONICS CO., LTD.

http://www.huaaoe.com

Remarks

Tubed, Reeled, Pb-free


Package

SOP16

Pin Configurations

Pin	Symbol	Function	Description	
1	LC	Oscillator	An external inductor and capacitor are connected between LC and GND to form a resonant circuit.	
2	R _{Di}	Distance	R _{Di} external resistor that sets the current and detection distance in the oscillator.	
3	N.C.	Not connected		
4	CI	Integrating capacitance	An external 1nF capacitor is usually connected between C _I and GND to reduce interference.	
5	R _{Hy}	Hysteresis	An external resistor between R_{Hy} and GND is used to set the detected window hysteresis.	
6	SC	Short-circuit detector	Short-circuit sampling of the output stage of the circuit (can be for VCC or GND).	
7	GND	Ground		
8	Q4	Output	Emitter of second output transistor (open circuit)	
9	Q3	Output	Collector of second output transistor (open circuit)	
10	Q2	Output	Emitter of first output transistor (open circuit)	
11	Q1	Output	Collector of first output transistor (open circuit)	
12	V _{CC}	Supply voltage		
13	V _{REF}	Internal reference voltage	Internal stable reference voltage, approximately 3.0V. When V_{REF} and V_{CC} are connected together, the operating voltage range of the circuit can be reduced to 3.1~4.5V.	
14	В	Base Output Transistors	Used to limit the base voltage of the internal output stage transistors.	
15	CD	Turn-ON delay Short-circuit delay	An external capacitor between C_D and GND is used to set the action delay time.	
16	VT	Two-wire regulator	In two-wire applications, V_T and V_{CC} are connected together.	

DANDONG HUAAO ELECTRONICS CO., LTD.

http://www.huaaoe.com

Automobile Semiconductor

QJ/DHA 01.71-2019

LDA505

Functional block diagram

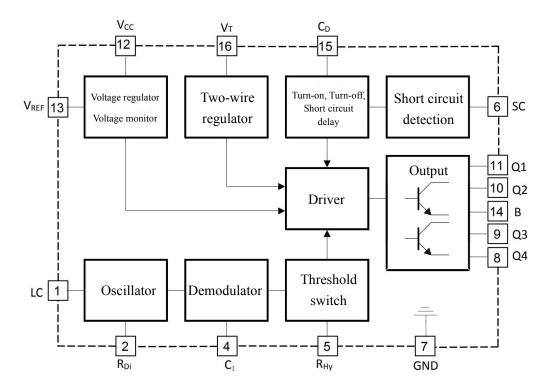


Figure 1. Schematic diagram of the internal structure of the LDA505

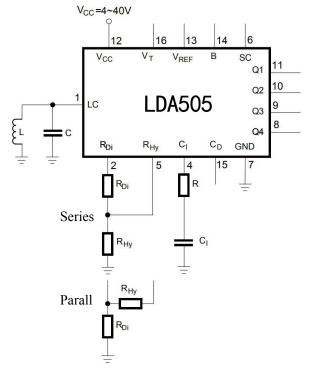
Recommended working conditions

Parameter	Symbol	Min	Max	Unit	Test Conditions
Voltage	Vcc	4	40	V	Normal work
Voltage	Vcc	3.1	4.5	V	$V_{\text{CC}} \!\!=\!\! V_{\text{REF}}$, Low voltage work
Range of working temperature	Та	-40	125	°C	

Limit parameter

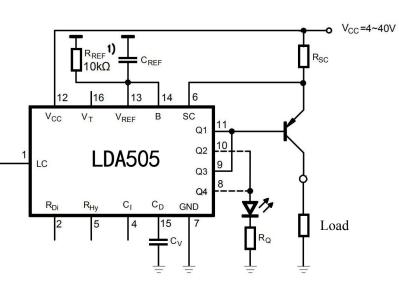
Parameter	Symbol	Min	Max	Unit	Test Conditions
Voltage	Vcc	-0.3	50	V	
Output pin voltage	$V_{Q1};V_{Q3}$	-1	45	V	V_{Q2} ; $V_{Q4} \leq V_{CC}$
Output tube voltage (B-pin open)	V _{Q2} ;V _{Q4}	-1	V _{CC}	V	$V_{Q1};V_{Q2};V_{Q4} < V_{Q3}$
Output tube voltage (B-pin connection)	V _{Q2} ;V _{Q4}	-1	V_{B}	V	$V_{Q1};V_{Q2};V_{Q4} < V_{Q3}$
Output tube output current	Iq1; Iq3	0	70	mA	No short circuit protection
Output tube output current	-I _{Q2} ; -I _{Q4}	0	70	mA	No short circuit protection
\mathbf{V}_{T} pin voltage	VT	-0.3	14	V	
V_{REF} pin current	-I _{VREF}	0	100	μA	
SC pin voltage	V _{SC}	0	V _{CC}	V	
R_{Di} pin pull current	-I _{RDi}	0	2	mA	
R_{Hys} pin sink current	I _{RHy}	0	2	mA	
B pin voltage	VB	-0.3	V _{CC}	V	
Junction temperature	TJ	-40	150	°C	
Storage temperature	Ts	-55	160	°C	

DANDONG HUAAO ELECTRONICS CO., LTD.


Electrical parameters Typical test conditions: $V_{CC}=4\sim40V$, $T_A=25^{\circ}C$, unless otherwise stated.

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Power section					1	
Static supply current	Three-wire system	Icc		0.55	0.70	mA
Static supply current	Two-wire system	Icc		0.62	0.80	mA
Three-wire system						
Minimum starting voltage	Output start action	V _{TON1}		3.64	4	V
Shutdown voltage	Output to no action	VTOFF1	3.0	3.6		V
Hysteresis	VTON1-VTOFF1	$\Delta V_{\rm Hy1}$		0.04		V
Oscillator section (LC, R _{Di})						
Oscillating frequency		fosc			3	MHz
Oscillation amplitude		Aosc		0.8		V_{PP}
Modulator and threshold s	witch section (C _I , R _{Hy})					
C_{I} Pin threshold		V _{CI}		2		V
C_{I} Pin hysteresis		V _{HyCI}		0.8		V
$C_{\rm I}$ pin sink current		ICI		7		μΑ
$C_{\rm I}$ pin pull current		-I _{CI}		6		μΑ
On-off level frequency	$C_{I} < 50 \text{ pF}, L=70 \mu \text{H}$	fs		5		kHz
Reference voltage (V _{REF})						
Reference voltage	I _{VREF} =0~100µA	VREF	2.65	3.0	3.10	
Two-wire regulator (V _T)	I				1	1
Minimum starting voltage		V _{TON2}	6.7	8.0	9.3	V
Shutdown voltage		V _{TOFF2}	5.0	6.0	7.0	V
Hysteresis	V _{TON2} -V _{TOFF2}	$\Delta V_{\rm Hy2}$	1.6	2.0	2.4	V
Switch delay and short circ	uit protection delay (C	D)				•
Turn-on delay		t _{DON}	0.49	0.65	0.82	ms/nF
Shutdown delay		tvA	17.0	25	34.0	µs/nF
Short circuit protection delay		t _{SC}	1.70	2.5	3.40	µs∕nF
Output stage (Q1, Q2, Q3, Q	4)					
Output voltage difference	$I_Q = 5mA, V_{Q1} - V_{Q2}, V_{Q3} - V_{Q4}$	V _{QR}		0.10	0.14	V
Output voltage difference	$I_Q = 70 \text{mA}, V_{Q1} - V_{Q2}, V_{Q3} - V_{Q4}$	VQR		0.5	0.99	V
Output current during short	circuit protection	I _{QSC}		300	500	mA
Short circuit detection (SC))					
Trigger voltage when short-circuit	ting the power supply VCC	V _{SCS}	0.255	0.3	0.345	V
Trigger current when short circui	t to power supply VCC	Iscs			30	μA
Trigger voltage when shorted to g	ground GND	Vsco	0.255	0.3	0.345	V
Trigger current when shorted to g	round GND	-I _{SCO}			6	μΑ

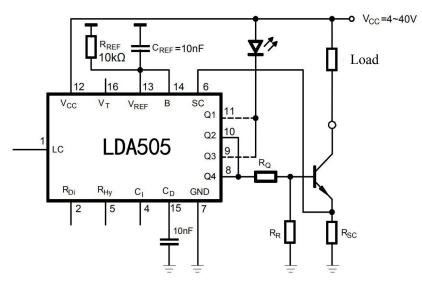
DANDONG HUAAO ELECTRONICS CO., LTD.


Application circuit

The input circuit uses four pins of LC, R_{Di} , R_{Hy} , and C_I .

Figure 2, application circuit diagram 1

The output circuit uses eight pins of V_{REF} , B, SC, Q1, Q2, Q3, Q4, and C_D.

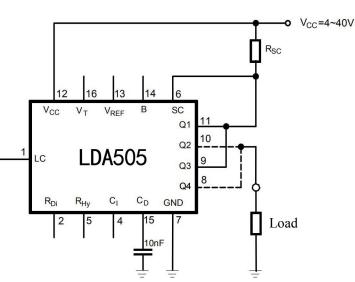

Remark: External PNP structure output with short circuit protection and LED indication. Generally, the short circuit protection is calculated by using the following equation:

 $Rsc = -\frac{0.3V}{max. \ load \ current}$

During the current sampling period, the current in the chip is limited to a maximum of 250mA.

Figure 3, application circuit 2

The output circuit uses eight pins of V_{REF} , B, SC, Q1, Q2, Q3, Q4, and C_D.


Remark: External NPN structure output with short circuit protection and LED indication. Generally, the short circuit protection is calculated by using the following equation:

 $Rsc = -\frac{0.3V}{max. load current}$,

During the current sampling period, the current in the chip is limited to a maximum of 250mA.

Figure 4, application circuit 3

The output circuit uses six pins of SC, Q1, Q2, Q3, Q4, and C_D.

Note: Direct internal NPN output structure with short circuit protection and LED indication. Generally, the short circuit protection is calculated by using the following equation:

 $Rsc = -\frac{0.3V}{max. \ load \ current},$

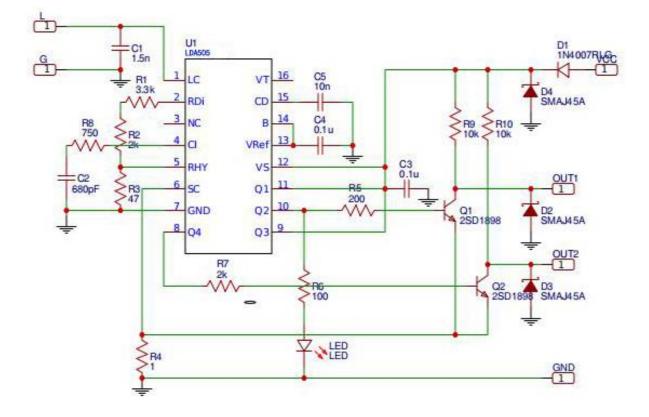
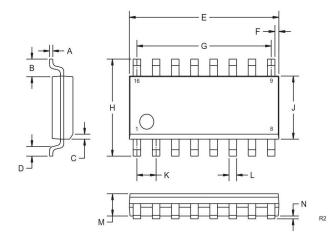

During the current sampling period, the current in the chip is limited to a maximum of 250mA.

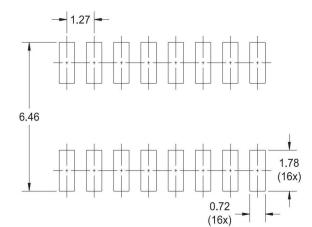
Figure 5, application circuit 4

DANDONG HUAAO ELECTRONICS CO., LTD.

Application circuit diagram

DANDONG HUAAO ELECTRONICS CO., LTD.




Package Information

SOP16

Dimensions in mm

尺寸	最小	最大	典型		
Α	0.19	0.25	0.22		
В	-	-	1.04		
С	0.30	0.50	0.40		
D	0.45	0.80	0.60		
Е	9.80	10.00	9.90		
F	-	-	0.25		
G	-	-	8.89		
Н	5.80	6.20	6.00		
J	3.80	4.00	3.90		
ĸ	-	-	1.27		
L	0.35	0.51	0.43		
М	1.25	1.55	1.45		
N	0.10	0.20	0.15		
单位: mm					

DANDONG HUAAO ELECTRONICS CO., LTD.