

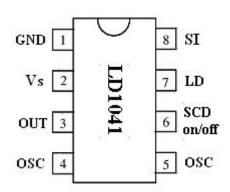
LD1041

Automotive Direction Indicator IC

Description

LD1041 (analog UAA1041B) was designed for use in conjunction with a relay in automotive applications. It is also applicable for other warning lamps such as "handbrake ON," etc.

Features


- Defective Lamp Detection
- Overvoltage Protection
- Reverse Battery Connection Protection
- Integrated Suppression Clamp Diode
- Short Circuit Detection and Relay Shutdown to Prevent Risk of Fire

Ordering Information

Package	Remarks
SOP8	Tubed, Reeled, Pb-free
DIP8	Tubed, Pb-free

Pin Description

Pin	Symbol	Function	
1	GND	IC ground	
2	Vs	Supply voltage	
3	OUT	Relay control output	
4	OSC	Oscillator	
5	OSC	Oscillator	
6	SCD	Short circuit detection	
0	on/off	on/off	
7	LD	Lamp failure detection	
8	SI	Start input	

Pins Figure

Maximum Ratings

Parameters	Symbol	Value	Unit	
Power dissipation	PD	350	mW	
Output current	Iout	300	mA	
Junction temperature	T _J (max)	150	$^{\circ}$	
Work temperature	TA	-40 ~ +100	$^{\circ}$ C	
Storage temperature	T _{stg}	- 65 ∼ +150	$^{\circ}$	

DANDONG HUAAO ELECTRONICS CO., LTD.

http://www.huaaoe.com

Automobile Semiconductor Tel: +86-0415-6161121 199701

Electrical Characteristics $(Ta = 25^{\circ}C)$

Characteristics	Symbol	Test condition	Min	Тур	Max	Unit
Battery Voltage Range	V _B		8.0		18.0	V
Overvoltage Detector Threshold	D _{th(OV)}	$V_2 - V_1$	18.0	20.2	21.5	V
Clamping Voltage	V _{IK}	$v_2 - v_1$	29.0	31.5	34.0	V
Short Circuit Detector Threshold	D _{th} (SV)	V ₂ -V ₇	0.63	0.7	0.77	V
Oscillator Constant (normal operation)	Kn		1.4	1.5	1.6	
Oscillator Constant (1 lamp defect of 21 W)	Kf		0.63	0.68	0.73	
	K1		0.16	0.18	0.193	
Oscillator Constant	K2		0.25	0.27	0.29	
	K3		0.126	0.13	0.14	
Defect Lamp Detector Threshold	Vth (Vpin2-Vpin7)	$V_{Pin2} = 13.5V$ $R_3 = 220\Omega$	79.0	85.3	91.0	mV
Starter Resistance	Rst	R ₂ +R _{Lamp}			3.6	ΚΩ
Duty Cycle (normal operation)			45	50	55	%
Duty Cycle (1 lamp defect of 21 W)			35	40	45	%
Current Consumption		V_{Pin2} - V_{Pin1} =8.0V	-	-0.9	-	
(relay off)	Icc (off)	=13.5V	-2.4	-1.6	-1.0	mA
Pin1		=18V	-	-2.2	-	
Current Consumption		V _{Pin2} - V _{Pin1} =8.0V		-3.8		
(relay on)	Icc (on)	=13.5V		-5.6		mA
Pin1		=18V		-6.9		

OJ/DHA 01.01-1997

LD1041

Circuit Description

HUA AO

The circuit is designed to drive the direction indicator flasher relay. Figure 1 shows the typical system configuration with the external components. It consists of a network (R_1, C_1) to determine the oscillator frequency, shunt resistor (R_S) to detect defective bulbs and short circuits in the system, and two current limiting resistors (R_2 / R_3) to protect the IC against load dump transients. The circuit can be used either with or without short circuit detection, and features overvoltage, defective lamp and short circuit detection. The light bulbs L_1 , L_2 , L_3 , L_4 are the turn signal indicators. When switch K_1 is closed, after a time delay of t_1 (in our example $t_1 \approx 75$ ms), the relay will be actuated. The corresponding light bulbs $(L_1, L_2 \text{ or } L_3, L_4)$ will flash at the oscillator frequency, independent of the battery voltage of 8.0V to 18V. The flashing cycle stops and the circuit is reset to the initial position when switch K_1 is open.

Overvoltage Detection

Senses the battery voltage. When this voltage exceeds 20.2V (12V Flasher) or 30.5V (24V Flasher), (this is the case when two batteries are connected in series), the relay will be turned off to protect the light bulbs.

Light bulb Defect Detector

Senses the current through the shunt resistor Rs. When one of the light bulbs is defective, the failure is indicated by doubling the flashing frequency.

Short Circuit Detector

Detects excessive current ($I_{sh} > 25$ A) flowing in the shunt resistor Rs. The detection takes place after a time delay of t₃ (t₃ \approx 55 ms). In this case, the relay will be turned off. The circuit is reset by switching S₁ to the off position.

Operation with Short Circuit Detection

Pin 6 has to be left open and a capacitor C₂ has to be connected between Pin 1 and Pin 2.

Operation without Short Circuit Detection

Pin 6 has to be connected to Pin 2, and the use of capacitor C₂ is not necessary. The circuit can also be used for other warning flashers.

OJ/DHA 01.01-1997

LD1041

Application Information

HUA AO

1. The flashing cycle is started by closing K_1 .

The switch position is sensed across resistor R_2 and R_{Lamp} by Input pin 8. $R_{st} = R_2 + R_{Lamp}$.

The condition for the start is: $R_{st} < 3.6 \text{ k}\Omega$.

For correct operation, leakage resistance from Pin 8 to ground must be greater than 5.6 k Ω .

- 2. Flashing frequency: $f_n = 1/(R_1 \times C_1 \times K_n)$
- 3. Flashing frequency in the case of one defective lightbulb of 21 W:

$$f_F = 1 / (R_1 \times C_1 \times KF)$$
 $K_n = 2.2KF$

- 4. t₁: delay at the moment when K_1 is closed and first flash $t_1 = K_1 \times R_1 \times C_1$
- 5. t₂: defective lightbulb detection delay $t_2 = K2 \times R_1 \times C_1$
- 6. t3: short circuit detection delay $t_3 = K3 \times R_1 \times C_1$

Application circuit

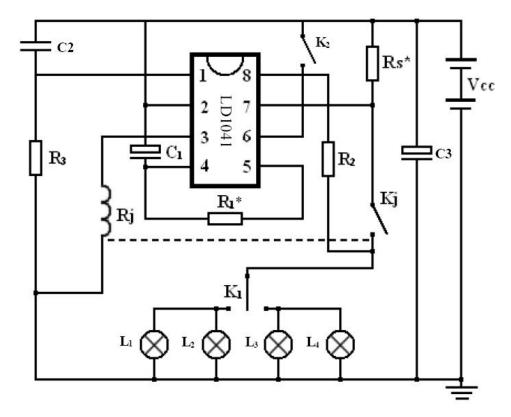


Figure 1. 12V Typical Application Circuit

External Parts List					
R1*	75 ΚΩ~150ΚΩ	C1	4.7μF		
R2	3.3KΩ C2 0.047μF				
R3	220Ω	C3	47μF/50V		
Rs* 30mΩ Rs* According to the different circuit board layout, can adjust.					
Kj / Rj Relay coil resistance range 100Ω					
K2: Turn off K2, have short-circuit protection.					
Turn on K2, not short-circuit protection, C2 may be deleted also.					

DANDONG HUAAO ELECTRONICS CO., LTD.

http://www.huaaoe.com

Tel: +86-0415-6161121 199701 Automobile Semiconductor

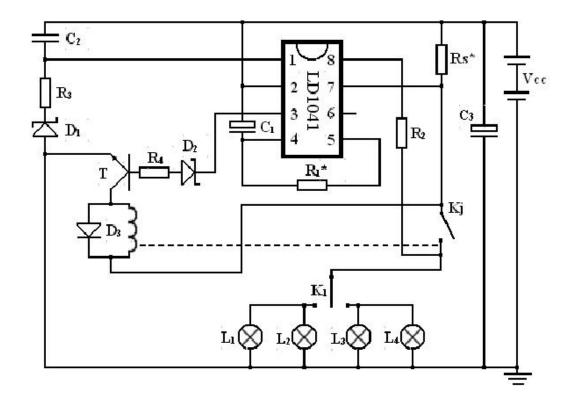


Figure 2. 24V Typical Application Circuit

External Parts List					
R1*	82ΚΩ	C1	4.7μF		
R2	6.8ΚΩ	C2	0.047μF		
R3	680Ω	С3	47μF/50V		
R4	4.7ΚΩ	D1	Clamp 6.8V		
Rs*	66mΩ	D2*	Clamp 16V		
T	C1008(O)或 8050	D3	1N4004		
Relay coil resistance range 360Ω					

http://www.huaaoe.com

Tel: +86-0415-6161121 199701 Automobile Semiconductor

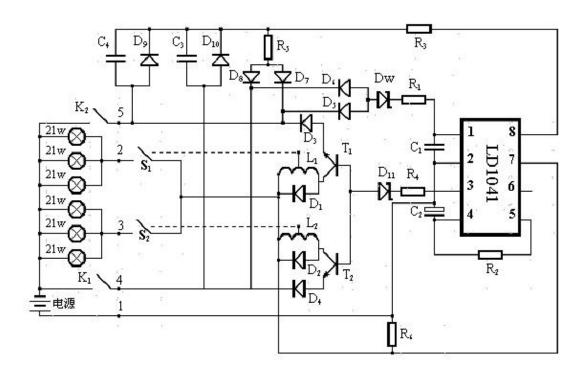


Figure 3. 24V Dual Output Typical Application Circuit

External Parts List					
R1	680Ω	C1	0.047μF	D1, D2, D3, D4, D5, D6	IN4004
R2	82ΚΩ	C2	4.7μF	D7, D8, D9, D10	IN4148
R3	6.8ΚΩ	СЗ	0.047μF	T1, T2	2SC1008 or S8050
R4	4.7ΚΩ	C4	0.047μF		
R5	3.3ΚΩ	DW	Clamp 6.8V		
R6	66mΩ	D11	Clamp 16V		

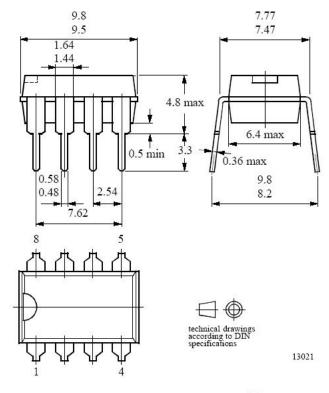
L1, L2 Relay coil resistance range 360Ω

Overvoltage Protection

Short Circuit Protection

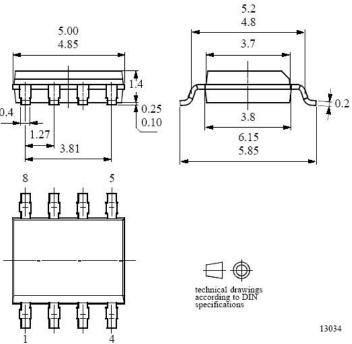
http://www.huaaoe.com

Automobile Semiconductor Tel: +86-0415-6161121 199701



Package Information

DIP8


Dimensions in mm

HUA AO

SOP8

Dimensions in mm

DANDONG HUAAO ELECTRONICS CO., LTD.

http://www.huaaoe.com